Short-term streamflow forecasting with global climate change implications – A comparative study between genetic programming and neural network models
نویسندگان
چکیده
Sustainable water resources management is a critically important priority across the globe. While water scarcity limits the uses of water in many ways, floods may also result in property damages and the loss of life. To more efficiently use the limited amount of water under the changing world or to resourcefully provide adequate time for flood warning, the issues have led us to seek advanced techniques for improving streamflow forecasting on a short-term basis. This study emphasizes the inclusion of sea surface temperature (SST) in addition to the spatio-temporal rainfall distribution via the Next Generation Radar (NEXRAD), meteorological data via local weather stations , and historical stream data via USGS gage stations to collectively forecast discharges in a semi-arid watershed in south Texas. Two types of artificial intelligence models, including genetic programming (GP) and neural network (NN) models, were employed comparatively. Four numerical evaluators were used to evaluate the validity of a suite of forecasting models. Research findings indicate that GP-derived streamflow forecasting models were generally favored in the assessment in which both SST and meteorological data significantly improve the accuracy of forecasting. Among several scenarios, NEXRAD rainfall data were proven its most effectiveness for a 3-day forecast, and SST Gulf-to-Atlantic index shows larger impacts than the SST Gulf-to-Pacific index on the streamflow forecasts. The most forward looking GP-derived models can even 0022-1694/$-see front matter ª 2008 Elsevier B.V. All rights reserved. perform a 30-day streamflow forecast ahead of time with an r-square of 0.84 and RMS error 5.4 in our study.
منابع مشابه
Comparative Analysis of Short-Term Price Forecasting Models: Iran Electricity Market
As the electricity industry has changed and became more competitive, the electricity price forecasting has become more important. Investors need to estimate future prices in order to take proper strategy to maintain their market share and to maximize their profits. In the economic paradigm, this goal is pursued using econometric models. The validity of these models is judged by their forecastin...
متن کاملComparative Study of Static and Dynamic Artificial Neural Network Models in Forecasting of Tehran Stock Exchange
During the recent decades, neural network models have been focused upon by researchers due to their more real performance and on this basis, different types of these models have been used in forecasting. Now, there is a question that which kind of these models has more explanatory power in forecasting the future processes of the stock. In line with this, the present paper made a comparison betw...
متن کاملShort Term Load Forecasting by Using ESN Neural Network Hamedan Province Case Study
Abstract Forecasting electrical energy demand and consumption is one of the important decision-making tools in distributing companies for making contracts scheduling and purchasing electrical energy. This paper studies load consumption modeling in Hamedan city province distribution network by applying ESN neural network. Weather forecasting data such as minimum day temperature, average day temp...
متن کاملLong-term Streamflow Forecasting by Adaptive Neuro-Fuzzy Inference System Using K-fold Cross-validation: (Case Study: Taleghan Basin, Iran)
Streamflow forecasting has an important role in water resource management (e.g. flood control, drought management, reservoir design, etc.). In this paper, the application of Adaptive Neuro Fuzzy Inference System (ANFIS) is used for long-term streamflow forecasting (monthly, seasonal) and moreover, cross-validation method (K-fold) is investigated to evaluate test-training data in the model.Then,...
متن کاملپیشبینی کوتاه مدت قیمت تراکم گرهی در یک سیستم قدرت بزرگ تجدید ساختار یافته با استفاده از شبکههای عصبی مصنوعی با بهینهسازی آموزش ژنتیکی
In a daily power market, price and load forecasting is the most important signal for the market participants. In this paper, an accurate feed-forward neural network model with a genetic optimization levenberg-marquardt back propagation (LMBP) training algorithm is employed for short-term nodal congestion price forecasting in different zones of a large-scale power market. The use of genetic algo...
متن کامل